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Abstract. A class of new exact solutions is obtained for spherically symmetric and static 
configurations by considering a simple relation e’ Cc (1 + x)”. For each integral value of n 
the field equations can be solved exactly and one gets a new exact solution. For physical 
relevance of the solutions, the pressure and the density should be finite and positive and 
the density, P/p and dP/dp should decrease as one goes outwards from the centre to the 
surface of the structure. Most of the exact solutions known at present are irregular in 
this respect. The new exact solutions for n = 3, 4 and 5 are regular in this respect for a 
certain range of values of U (  = mass/radius). The cases corresponding to n = 1 and 2 are 
already available in the literature, being obtained by other methods. For regular solutions 
with dP/dp s 1, the maximum values of the surface and central redshifts are 0.635 and 
1.614 respectively. If one assumes the surface density to be 2 x 1014 g ~ m - ~ ,  a neutron 
star model corresponding to a mass up to 4.2 Ma can be obtained. This is an upper limit 
for a neutron star model based upon exact solutions with completely regular behaviour 
and dP/dp 1. In the limiting case when dP/dp is infinite, the surface and the central 
redshifts are 1.14 and 7.36 respectively. The variation of density is slow, and for a 
completely regular solution the maximum value for the ratio of the central to surface 
densities, that is po/p., is 3.0. 

1. Introduction 

It is difficult to obtain explicit solutions of Einstein’s gravitational field equations in 
terms of known analytic functions, on account of their complicated and nonlinear 
character. Various exact solutions of Einstein’s field equations have been discussed 
by Kramer et a1 (1981). The first exact solutions of field equations for a perfect fluid 
sphere of constant density were obtained by Schwarzschild (1916). Tolman (1939) 
gave five new exact solutions for the fluid spheres. Of these, the I11 solution was the 
same as that given by Schwarzschild. The V and VI solutions belonged to infinite 
density and infinite pressure at the centre and thus cannot be considered to be of 
much physical relevance. In the I11 solution the density is constant and hence 
dP d = - 00, thus making the expression for the speed of sound, us = (dP/dp)1’2 = 

VI1 solution involves complex expressions and lacks the simplicity and elegance of 
an exact solution. The details of the VI1 solution have been worked out by Durgapal 
and Rawat (1980). 

Tolman’s IV solution is physically relevant and contains simple algebraic 
expressions for pressure, density, v and A. In particular, the expression for v is so 
simple that one can work out the trajectories of photons and neutrinos with ease 
(Durgapal and Pande 1979). But this solution has its own limitations, which we may 
summarise as follows (Durgapal and Pande 1980). 

P -W. Thus only the IV and VI1 solutions of Tolman are of physical relevance. The 
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(a) The maximum value of the ratio of the mass and the radius, that is U = m/a, 
is f and for this value of U, the pressure and the density become infinite at the centre. 

(b) For 0.25 < U si, the value of P / p  increases with increasing values of r and 
attains a maximum at a certain value of r within the configuration. Thus the ratio 
P/p is not a maximum at the centre but at some other point. This restricts the use 
of this solution to the values of U d 0.25. 

(c) The speed of sound, v s  = (dP/dp)"2, is 0.447 at the centre but at some other 
point it is a maximum. For all values of U, the value of dP/dp increases as we move 
outwards from the centre. However, this is not a very serious drawback because 
Bondi (1964) has discussed the solutions in which dP/dp jumps from f to 1 at the 
boundary. But this is not consistent with the different equations of state known for 
nuclear matter (Canuto 1975). 

In this paper, a method is given for treating the nonlinear differential equations 
applying to gravitational equilibrium of perfect fluids, in such a manner as to obtain 
a class of exact solutions which may have measure of physical interest. Some of the 
particular cases of this new class of exact solutions have been found to be free from 
any of the drawbacks discussed above. The IV solution of Tolman is a particular case 
of this new class of ,solutions. 

The general assumptions made for solving Einstein's field equations are the same 
as those given by Bondi (1964). The solutions are continuous at the boundary with 
the external Schwarzschild solutions, that is at the boundary, r = a, we have 

1-2m/a=1-2u. = -A(a) = P(r = a )  = 0, e 

The pressure and density must follow one or both of the following restrictions. 
(i) The trace of the energy-momentum tensor is positive, that is, P < p c 2 / 3 .  
(ii) The signal cannot propagate at a velocity greater than that of light, that is, 

dP/dp 9 c 2  (Zeldovich 1961). 
Taking the velocity of light c = 1 and the gravitational constant G = 1, the relations 

between the density p, the pressure P and the energy-momentum tensor of a perfect 
fluid are given by 

(1) 
P=-Ti = -T2 2 = -Ti. 

P = T:, 

2. Field equations and their solutions 

2.1. Field equations 

The line element is given by 

ds2 = good?' + g&[ dx dx I ,  where k, I = 1,2,3, 

(2) 2 gll = -eA(r) g22 = -r , 
for k # 1. 

goo = e y ( r )  

g33=-r sin 0, gkl= 0 2 2  

Here U and A are functions of r alone. The resulting field equations are 

- 87rT: = 87rP = e-A(v'/r + l /r2) - l /rz,  
-87rT2 2 = -87rT3 3 = 8 7 r P = e - A [ ~ v " + f ~ ' 2 - $ ~ ' A ' + ( ~ ' - A ' ) / 2 r ] ,  

-87rT: = -87rp = -1/r2-e-*(A'/r-l/r2). 

(3) 

(4) 

( 5 )  
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Equations (3) and (4) give 

-e -A~ ' (v ' /4+  1/2r)+e-~(v"/2+ v t 2 / 4 -  v'/2r- l / r z )+  1/r2. 

ey = A(I + ~ r ' ) " ,  

(6 )  

Let us now assume that the value of Y is given by a general expression 

where n is a parameter. (7) 

We have chosen this simple expression because this gives us a very simple relation 
for the redshift from any region of the configuration. Further, a simple expression for 
e" can be helpful in calculating the trajectories of ultra-relativistic particles in the 
gravitational field. 

Substitution of equation (7) into equations (3)-(6) leads to 

8 TP/ C = 2nZ/ (1 + X )  + (Z - l ) / ~ ,  

8 ~ p / C  = (1 -Z)/X -2 dZ/dx, 

dZ/dx + Q(x)Z = f ( x ) ,  

(8) 

(9) 

where 

Q(x)=-[1+2x +(1+2n  -n2)X2]/X(1+X)[1+(n +l)x] ,  (11) 

x = Cr2, e+ = Z, f (x )=- ( l+x) /x [ l+ (n  +l)x]. (12) 
The solution of equation (10) is given by 

Z = FK - FI, (13) 

(14) 

where 
2 / ( n + l )  = x / ( l  +x)"-*[l+ (n  + 1)x] 

and 

This integral can be solved very easily for any value of n, because 

+. . .) 1 (n - 1) (n - l)(n - 2) (n - l)(n - 2)(n - 3)x 
3 

+ 
2 

I=[(?+,- + 

The first two terms give 

j(F2+ (n - l)/x) dx[l + (n  + l )~ ] - ( " -~ ) ' ( "+~)  = -X- ' [ l+  (n + 1)X]2/(n+1), (17) 

Other terms in the expansion (16) can be evaluated for different values of n. With 
the values of e" and e-A = Z known, we can calculate the pressure, density, the ratio 
P/p and the value of dP/dp at any point within the configuration. The constants A, 
C and K can be determined by considering the boundary conditions P ( r = a ) = O ,  

1-2u. From the condition P(a)=O we get x l = C a  = 
u / [ n  - (2n + l)u], and from e"'") = 1 - 2u we get 

2 e-A(") = e v ( a )  = 

A=[1-(2n + l ) ~ / n ] " / ( l - 2 ~ ) " - ' .  

The value of the constant K appearing in the expression for e-* = Z = FK -FI is 
obtained after writing the expression for e-A for a particular value of n. 



2640 M C Durgapal 

3. Solutions for different values of n 

By taking different values of n, we can obtain a very large number of exact solutions 
of Einstein’s field equations. Here, we have given the exact solutions for ~t = 1 , 2 , 3 , 4  
and 5 and discussed the physical relevance of these solutions. The calculations for 
higher values of n can be done by evaluating the integral I. 

3.1. n = l  

The solutions are given by 

e-A = (1 +x)(I  +KX)/(I +2x), 

87rP (1+K+3Kx)  

e” =A(1 + x ) ,  

-= 
C (1 +2x) ’ 

8 ~ p  1-3K-3Kx 2(1+Kx) + -- - 
C 1 +2x (1+2x)2’  

x1 = c a 2  = u / ( l  - 3241, 
where 

A = 1 - 3u, (19) 
On substituting the values of various constants in the expressions for P, p, v and A it 
can be seen that the results are identical to Tolman’s IV solutions. The limitations 
of the IV solution have already been discussed. 

K = -(1-3u). 

3.2. n =2 

The solutions can be written as 

e-A= l + K x / ( l + 3 ~ ) ’ / ~ ,  e’ = A ( ~ + x ) ~ ,  

87rP/C = [ 4 + K ( 1 + 5 ~ ) / ( 1 + 3 ~ ) ~ / ~ ] / ( 1 + ~ ) ,  

87rp/C= - K ( 3 + 5 ~ ) / ( 1 + 3 ~ ) ” ~ ,  
where 

A = ( 1 - 2 . 5 ~ ) ~ / ( 1 - 2 ~ ) ,  x1= cu2 = u/(2 - 5 u ) ,  

K = -(2 - 2 ~ ) ~ ’ ~ ( 2  - 5 ~ ) ’ / ~ ,  

dP/dp =[1-5x2-(2/K)(1 + 3 ~ ) ~ ’ ~ ] ( 1 + 3 ~ ) / 5 ( 1 + ~ ) ~ .  
The value of P/p is a maximum at the centre and decreases with increasing values of 
r. But 

d 
- ( d P / d p ) = - f [ 4 ~ ( 2 + 5 ~ ) + ( 5 - ~ ) ( 1  + ~ x ) ” ~ / K ] ( ~ + x ) - ~  
dx 

= -2/K (at the centre, r = 0) =positive. 

Because K is always negative the nature of dP/dp is irregular near the centre for any 
value of U. The results do not show any significant advantage over Tolman’s IV 
solution. On substituting the values of constants in terms of U, the solution becomes 
identical to that obtained by Kuchowicz (1975), Adler (1974) and Adams and Cohen 
(1975). 
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3.3. n = 3  

The solutions are given by 

2 - x  Kx 
e-A =- + e” = ~ ( 1  +x13, 

2(1+x) ( 1 + ~ ) ( 1 + 4 x ) ’ / ~ ’  

8rP/C = [g( l -  X )  + K(1+ 7 ~ ) ( 1 +  4 ~ ) - ’ / ~ ] ( 1 +  x ) - ~ ,  

8 f l p / C  = [q(3 + x )  - 3K(1+ 3 ~ ) ( 1 +  4 ~ ) - ~ / ~ ] ( 1  + x ) - ~ ,  

d P  
d p - 5 + ~  - 2 K ( 5 + 2 3 ~ + 3 0 ~ ~ ) ( 1 + 4 ~ ) - ~ / ~ ’  

9 - 3~ - 2K( l -  x - 14x2)(1 + 4 ~ ) - ~ / ~  _-  

where 
A = ( 1 - 7 ~ / 3 ) ~ / ( 1 - 2 ~ ) ~ ,  x1= cu2  = u / ( 3  -7u), 

K = -9(1 - ~ l ) ( l + 4 ~ 1 ) ~ / ~ / 2 ( 1 + 7 ~ 1 ) .  

P/p decreases with increasing values of r for all values of U and 

Po/po = (9 + 2K)/(9 - 6 K )  (dP/dp)o= (9-2K)/(5- 10K). 

For K = -1.5, the value of P/p at the centre (that is Po/po) is 4 and U = 0.292. But 
the nature of dP/dp is not regular for every value of U. In table 1, the values of Po/po, 
the maximum value of dP/dp and the position of this maximum value, xl, the constant 
K and the mass of the neutron star in solar mass units (the mass has been calculated 
by assuming the density at the surface, ps,  to be equal to 2 x 1014 g ~ m - ~ )  have been 
given for different values of U.  

Table 1. Various parameters for the solution with n = 3. 

U 

0.01 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.375 
0.3908 

PalPo 

0.005 
0.061 
0.103 
0.158 
0.236 
0.362 
0.635 
1 .ooo 
5 
5 

(dpldp),., 

0.3644 
0.4140 
0.4531 
0.5054 
0.5828 
0.7207 
1.0629 
1.8000 
infinity 

1.0 
1 .o 
1.0 
1 .o 
0.9 
0.7 
0.5 
0.0 
0.0 

K 

-4.410 
-3.575 
-3.088 
-2.572 
-2.012 
-1.375 
-0.565 

0.000 
0.500 

x1 = Ca2 

0.0034 
0.0435 
0.0769 
0.1250 
0.2000 
T 
0.6363 
1 .oooo 
1.4781 

1 

m/Mo 

0.027 
0.766 
1.315 
1.889 
2.494 
3.228 
4.334 
5.104 
5.312 

palps 

1.014 
1.176 
1.304 
1.478 
1.724 
2.096 
4.473 
3.000 
2.942 

The value of dP/dp is less than one throughout the configuration for U CO.35, 
but the behaviour of dP/dp is not regular (dP/dp is not a maximum at the centre). 
For K 3 0, that is U 3 0.375, the behaviour of dP/dp is regular. One important feature 
at U = 0.375 is that dP/dp B 1 throughout the structure. At the surface its value is 
one and at the centre its value is 1.8. In this particular case, if we consider the speed 
of sound to be supraluminal for nuclear matter (that is, dP/dp 3 1 for p b 2  x 
1014 g ~ m - ~ ) ,  we get a mass of 5.1 Ma. For this value of U, the surface redshift is 1.00 
and the central redshift is 4.75. For K = O S  and U =0.3908, the value of dP/dp 
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becomes infinite at the centre and Po/po is 5. For this extreme case, the surface and 
central redshifts are respectively 1.142 and 7.356. For U > 0.3908, the value of dP/dp 
becomes negative and thus the solutions are physically irrelevant beyond this value 
of U. 

3.4. n = 4  

The solutions are given by 

7 - 1 0 ~  - X’ Kx 
e-’ = + e” = ~ ( 1 + ~ ) ~ ,  

7(l+x)’ ( 1 + ~ ) ~ ( 1 + 5 x ) ~ ’ ”  

~ T P / C = [ Y ( ~ - ~ X - X ’ ) + K ( ~  + 9 ~ ) ( 1 + 5 ~ ) - ~ / ~ ] / ( 1 + ~ ) ~ ,  (22) 
8 ~ p /  C = [$(9 + 2~ + x ’ )  - K(3 + 1 0 ~  - 9x2)( 1 + 5 ~ ) - ’ / ~ ] / (  1 + x ) ~ ,  

d P  
dp 

4(13 - 1 2 ~  - x ’ )  - 7K(1- 2~ - 27x2)( 1 + 5 ~ ) - ’ / ’  
2(25 +2x + x * )  -7K(5 + 3 1 ~  + 4 7 ~ ’  -27x3)(1 + 5 ~ ) - ” / ”  

-= 

P/p is regular for this solution as its value is a maximum at the centre and decreases 
with increasing values of r. At the centre we have 

Po/po = (32 + 7K)/(72 - 21K) and (dP/dp)o= (52-7K)/(50-35K). 

For K = -4, U = 0.287 the value of Po/po is 5. For U < 0.30, the value of dP/dp < 1 
throughout the configuration but its maximum is not at the centre. For 0.30 s U s 
0.313, the value of dP/dp s 1 and its behaviour is regular (dP/dp is a maximum at 
the centre and decreases with increasing values of r). For U = 0.313, (dP/dp)o = 1, the 
surface redshift is 0.635, the central redshift is 1.614 and mass of the neutron star 
comes out to be 4.19 M o  (assuming ps = 2 x l O I 4  g ~ m - ~ ,  Durgapal et a1 1979) which 
is consistent with the values obtained by others. For K = and U = 0.3705, Po/po = 1 
and (dP/dp)o is infinite. For this extreme case the surface and central redshifts are 
0.965 and 3.754 respectively. For all U 20.30 the value of dP/dp is a maximum at 
the centre and decreases with increasing r. 

3.5. n =5 

The solutions can be written as: 

e-* = [l -x(309+ 54x +8x2)/112 +Kx/(l+ 6 ~ ) ” ~ ] / ( 1  + x ) ~ ,  e”=A(l+x)’ ,  

8TP/’C = [(475 - 4 1 2 5 ~  - 1050~’-200~~) /112+K(1+ 1 1 ~ ) / ( 1 + 6 ~ ) ” ~ ] ( 1  + x ) - ~ ,  

(23) 

8.irp/C = [(1935+ 15x +450x2+ 120x3)/l12 

- K ( 3 + 1 1 ~  - 2 2 ~ ~ ) ( 1 + 6 ~ ) - ~ / ~ ] ( 1 + ~ ) - ~ ,  
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d P  5(241- 41 IX - 6 0 ~ ’  - 8~ ’) - 112K(1- 3~ - 44x2)(1 + 6 ~ ) - ~ / ’  -= 
dp 
where 

3 (5 15 - 5 7 x  + 36x + 8x ’) - 1 12K (5 + 39x + 66x ’ - 88x 3)( 1 + 6x)-’”’ 

A = ( 1 - 2 . 2 ~ ) ’ / ( 1 - 2 ~ ) ~ ,  x1 = Ca2 = u/(5 - I I U ) ,  

and 

K = -(475 -4125x1 - 1050~:  - 2 0 0 ~ ~ ) ( 1 + 6 ~ ~ ) ” ~ / 1 1 2 ( 1 +  11x1). 

For all values of U, the value of P/p is a maximum at the centre and decreases with 
increasing values of r. For U d 0.265, the value of dP/dp is a maximum at the centre 
and then decreases with increasing values of r. For U = 0.265, (dP/dp)o = 0.85. For 
0.265 < U d 0.29, the value of dP/dp is not a maximum at the centre. For U > 0.29, 
the nature of dP/dp becomes erratic, being negative at some values of r within the 
configuration. However, this solution gives us the widest range of applicability with 
a regular behaviour of both P/p and dP/dp. For U = 0.265, the surface redshift is 
0.46 and the central redshift is 1.48. The neutron star mass for this value of U comes 
to be 3.387 Ma. The value of Po/po, x1 = Cu2, the constant K, the maximum value 
of dP/dp and its position and the mass of the neutron star have been shown in 
table 3. 

Table 2. Various parameters for the solution with n =4. 

Position 
(ria) of 

U P O ~ P O  (dPldP)max (dPldP)max K xl=Ca2 mIM9 POIP~  

0.01 0.005 
0.10 0.061 
0.15 0.103 
0.20 0.160 
0.25 0.241 
0.30 0.375 
0.313 141 0.429 
0.35 0.681 
0.370 483 1.000 

0.4045 
0.4550 
0.4968 
0.5580 
0.6587 
0.8806 
1 .ooo 
2.106 
infinity 

1 .o 
0.8 
0.7 
0.6 
0.4 
0.0 
0.0 
0.0 
0.0 

-4.451 0.0026 
-3.335 0.0323 
-2.678 0.0660 
-1.979 0.0909 
-1.215 0.1429 
-0.335 0.2308 
-0.071 0.2649 

0.799 0.4118 
7 0.5566 
- 10 

0.027 1.012 
0.837 1.155 
1.510 1.264 
2.277 1.405 
3.106 1.592 
3.965 1.842 
4.191 1.918 
4.818 2.117 
5.157 2.129 

Table 3. Various parameters for the solution with n =5. 

0.01 0.005 0.4336 0.0 -4.091 0.0020 0.027 1.011 
0.10 0.061 0.4935 0.0 -2.692 0.0256 0.838 1.143 
0.15 0.104 0.5459 0.0 -1.866 0.0448 1.515 1.257 
0.20 0.161 0.6274 0.0 -0.985 0.0714 2.288 1.363 
0.25 0.244 0.7765 0.0 -0.163 4 3.127 1.520 
0.265 0.277 0.8506 0.0 0.300 0.1271 3.387 1.574 

Note: The mass of the neutron star mlM3 has been calculated by assuming the density at r = a ,  pr= 
2 ~ 1 0 ~ ~ g c m - ~ .  
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4. Discussion 

The new class of exact solutions can provide us with a large number of solutions of 
Einstein’s field equations by selecting different values of the parameter n. Pressure, 
density, v, A and dP/dp can be expressed in terms of simple algebraic expressions. 

For n = 1, the solution is identical to Tolman’s IV solution, and for n = 2, we get 
the solution discussed by Adler (1974). Both these solutions are irregular in the 
behaviour of dP/dp. Hence they are not suitable for application to a neutron star 
model because the equations of state for nuclear matter show a regular behaviour of 
dP/dp. The solutions for  which dP/dp increases with increasing density are termed 
regular in this paper. 

The physical nature of the solutions corresponding to n = 3 , 4  and 5 is shown with 
the help of tables 1, 2 and 3. The maximum value of U for which the solutions are 
regular and dP/dp s 1 is found to be 0.313 (case n = 4). The surface and central 
redshifts for this case are respectively 0.635 and 1.614. Assuming the surface density 
to be 2 X 1014 g ~ m - ~ ,  the mass of the corresponding neutron star model comes out 
to be 4.19 Ma. However, the maximum values of the surface and the central redshifts 
are 1.14 and 7.36 respectively (when dP/dp = 03 for n = 3 and U = 0.3908). For regular 
solutions, the condition P ~ p / 3  is not satisfied for n s 4 .  For n = 5 all the regular 
solutions satisfy both the restrictions (i) P s p / 3  and (ii) dP/dp s 1. The maximum 
mass for the corresponding neutron star model comes out to be 3.387 Ma. 

For all these solutions, the density decreases as we go outwards from the centre. 
The variation of density is slow for all the regular solutions. For n = 3, the maximum 
value for the ratio of central to surface densities, that is po/ps, is 4.5. For n = 4, when 
dP/dp = 1 at the centre and the solution is regular, we have po/ps = 1.918. Even when 
dP/dp is infinite, po/ps is 2.129. For n = 5 ,  the maximum value of po/ps for regular 
solutions is 1.574. 

In these solutions the expression for e” = A( 1 + x ) ”  is simple and one can calculate 
the trajectory of ultra-relativistic particles with comparative ease. The solutions for 
the values of n > 5  can also be worked out and their physical relevance can be seen. 
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